Con-X Microcalorimeter Development at NIST

The NIST X-ray Team

Jim Beall Kent Irwin
Steve Deiker Joel Ullom
Lisa Ferreira Leila Vale
Gene Hilton Yizi Xu

Joern Beyer (PTB Berlin)
Martin Huber (CU Denver)
Piet de Korte (SRON)

Fabrication status

- Problems with transition-temperature reproducibility over the last year: resolved with single-application deposition system
- Benzotriazole Cu passivation step implemented
- Square geometry TES microcalorimeters fabricated
- Several varieties of annular-geometry detectors fabricated
- Mo and Al films implanted with magnetic ions a possible alternative to bilayers
- Surface-micromachined structures for arraying ready to begin test array fabrication

Mo-Cu and Mo-Au Bilayer TES

- A bilayer of a thin superconducting film and a thin normal metal acts as a single superconductor with a tunable T_c - the "proximity effect"
- Mo-Cu and Mo-Au
 Robust and temperature stable
 Molybdenum Tc ~ .92 K
 Copper, Gold normal
 - Sharp
 - Reproducible
 - Tunable
 - Robust

Dedicated Mo-Cu bilayer system

- Fully automated, load-lock sputtering system
- Single application / controlled access
- Has resolved problems with process drift
- Uniform films over whole wafer (\sim 1%)
- Reproducible, uniform transition temperatures

New square geometry detectors

- $400 \mu m \times 400 \mu m pixel$
- Operate up to ~10 keV
- Mistake on 3-µm Bi absorber (thick layer of contaminants between the TES and the Bi). New detectors in fab. Good thermalization at low energy, *significant* excess broadening at 6 keV
- 5.9 keV heat pulses ~ 2 eV FWHM ~
 calibrated against x-rays (does
 NOT include thermalization
 broadening!!)

Remember, *Just* a heat pulse

Energy (eV)

Microcalorimeter system transferred to Gaithersburg

SEM

X-ray microcalorimeter

In active use by *chemists* in the Chemical Science & Technology Lab at NIST (Dale Newbury *et. al.*)

National Institute of Standards and Technology
Technology Administration, U.S. Department of Commerce

Survey of L,M lines of heavy elements

A TES microcalorimeter system is now being used by NIST to tabulate new values of the L&M lines of the heavy elements. Currently tabulated values are extremely inaccurate.

Tabulated Ba M line positions and intensities

Example: Ba M lines measured using a TES microcalorimeter disagree with tabulated values. Microcalorimeter results were verified with a WDS crystal spectrometer.

Constellation

Annular TES design

- Radial symmetry
- No boundaries parallel to current flow
- Magnetically self shielded
- Will have different noise characteristics
- Several varieties fabricated, already showed enhancement of critical current, awaiting testing as spectrometers

Magnetic impurity TES

- Reduction of T_c using ion implanted magnetic ions.
- Have implanted Fe, Co, Gd, Mn into Mo and Al.
- Potential simpler processing
- Different optimization parameter space

Surface-micromachined microcalorimeters

Wiring can be placed beneath the TES.

Provides a robust, planar structure for arrays.

Surface micromachined structures

Fabrication:

Release layer - 2 μ m polysilicon Release - XeF₂ isotropic dry etch Membrane - 0.5 μ m low stress nitride Wiring - 200 nm sputtered Mo on top, Nb underneath

Wiring and surface micromachining

- Demonstrated superconducting Mo wires running up on platform (to connect pixels)
- Demonstrated superconducting Nb wires running beneath platform (to extract leads from focal plane)

Arrays by surface micromachining

Probing different leg structures

6×6 array of 250 μm micromachined structures for TES

Instrumentation Status

- 32-channel SQUID multiplexer demonstrated at 4 K
- Room-temperature electronics for 2×8 demo in place
- Firmware and software for switched digital feedback tested
- Initial multichip ADR MUX boards fabricated
- ADR wired with Cu-Ni flex cabling and SQUID modules for 2 × 8 demonstration array
- Beginning design of common 2 × 8 platform with GSFC will allow GSFC-NIST exchange of devices.

SQUID multiplexer scheme

SQUID MUX

- 32-channel MUX. (Need 32 chips to instrument kilopixel array.)
- First-generation MUX deployed in astronomical instrument (FIBRE) with Dominic Benford *et. al.* at GSFC
- Second generation improves crosstalk & power

FIBRE at the CSO

Room-temperature MUX electronics

FPGA firmware for switched feedback

- Switched digital feedback is working
- Can sample at 1.6 MHz line rate
- Sufficient performance for
 2 × 8 demo array
- Need to increase bandwidth for full instrument

Different sinewaves in 8 SQUIDs

Instrumentation Status

Six-month plan

- 1) Characterize performance of existing square detectors
- 2) Fabricate and test square detectors with better Bi absorbers
- 3) Fabricate TES detectors using Fe-implanted Mo.
- 4) Fabricate a small array of TES detectors using surface-micromachined structures
- 5) Test annular detectors
- 6) Design common 2 x 8 platform with GSFC

